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Abstract

An e-variety is a class of regular semigroups that is closed under the formation of direct
products, homomorphic images and regular subsemigroups. In a previous paper, the authors
established that, for any nongroup e-variety ¥, the e-variety .#% o ¥, where o denotes the
Mal’cev product within the class of regular semigroups and ¥% denotes the e-variety of left
groups, is actually equal to the e-variety ¥ @ ¥ generated by all wreath products of the form
G & T, where G € 4, the e-variety of all groups, and 7 € 7. It was also shown that if ¥ % de-
notes the e-variety of left zero semigroups and . the e-variety of all semilattices, then ¥ 2 o ¥~
is equal to the e-variety & @™ v generated by certain subsemigroups of the wreath products
of the form S® 7T, where S€.% and T € 7. In this paper, the e-varieties generated by the
regular parts of the wreath products of the form #2 @ ', #4 R ¢ and €. ® ¥, where 27,
A4 and 6/ denote the e-variceties of right zero semigroups, rectangular bands and completely
simple semigroups respectively, are studied and are found, in general, to fall far short of the
corresponding Mal’cev products. An important tool is the associativity of the wreath product of
e-varicties under certain conditions and a substantial part of the paper is devoted to this issue.
© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The class of all regular semigroups is not closed under thc operation of taking
subsemigroups and therefore cannot be considered as a variety of algebras. However,
some of the ideas and techniques of universal algebra that have been so potent in the
study of other classes were made available for the investigation of regular semigroups
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through the introduction of the concept of an e-variety, that is a class of regular
semigroups that is closed under the formation of direct products, homomorphic images
and regular subsemigroups. This concept was introduced by Hall [7] and Kadourek
and Szendrei [14]. The set of all ¢-varieties forms a complete lattice £ (A£S) [7].
In [24] the authors introduced certain complete congruences on this lattice. Associated
with each of these complete congruences is the operator that maps each element to the
maximum element in its class. These operators assume the form

LA 1/,-7» = PG 17 4y T = HGot . ,1/-_),%,,\,\1 :%,y)o/%,;
f ot K=y, Vst M =Rty =t K=oy

In [25], the authors provided alternative characterizations of the e-varieties #% o ¥ and
L o in terms of wreath products. It so happens that the wreath product of a group
with a regular semigroup is again a regular semigroup so that it is possible to define
% ® ¥ to be the e-variety of regular semigroups generated by all wreath products of
groups with elements from ¥ . With this construction to hand it was shown in [25] that

=gy

A similar result was obtained for 7 * in terms of a modified wreath product . @* ¥,
where & is the e-variety of all semilattices, as well as other results characterizing
Mal’cev products in terms of wreath products. For an interesting study of the applica-
tion of wreath products to the description of e-free objects in e-varieties, see [12].

In order to extend the investigations of the relationships between Mal’cev products
of the form o ¥ and wreath products of the form # ® ¥, for e-varieties # and
1" where the e-variety # assumcs a more general form than in the cases referred to
above, it is natural to consider such e-varieties as the e-variety 6.% of completely
simple semigroups and the e-variety #.4 of rectangular bands. In general, the wreath
product S ® T of two regular semigroups need not be regular. However, Jones and
Trotter [12] have shown that the set Reg(S® 7) of regular elements in S& 7' will
form a regular subsemigroup provided cither S or 7 belongs to .9, the e-variety of
completely simple semigroups. This makes it possible to define # & ¥, whenever %
or ¥ is contained in €., to be the e-variety generated by the regular parts of the
wreath products S®Q T, for all Se #, Te ¥

However, since 4. = ¥ < £, we quickly find ourselves concerned with the issue
of associativity of the wreath product of e-varieties: (¥ Q¥ )VQ W =UQ (1 @W).
As a consequence, after reviewing some required background in Section 2 and deal-
ing with some preliminary technical observations in Section 3, the main results in
Section 4 identify certain important circumstances under which the associative law
(U@t YW =UR(F < H#7) will hold for e-varieties #, ¥ and #". In particular,
it is shown that associativity prevails in the following circumstances:

() #.# C% and + C&EY, or
(it) 7.# C% and # € LW (I L)Y Lo (ES), OF
(iii) #,4 C % and # is monoidal, that is, such that S' € ¥ for all S€ #"
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In addition, it is shown that ¥ @* (¥ ® ¢ )= (¥ @* #)% ¥, provided ¥~ C %, where
& @* 4 denotes the e-variety generated by all products, involving a modified version
of the wreath product, of elements from % and any e-variety # of E-solid regular
semigroups.

For any e-variety %, we denote by #C.. the e-variety consisting of all regular semi-
groups S for which the least full self-conjugate subsemigroup C..(S) of S lies in #.
It was essentially established by Jones and Trotter [12] that, for any e-subvariety #
of O, UG =U*%G=4C, =%C. Section 5 begins with an example to show that
the equality # © % = #C,. does not hold in general. Indeed, we provide an infinite
family of such examples. This is followed by the first main result of the section
which establishes that for certain e-varieties #, if equality does prevail then it will
also prevail when # is replaced by its image under the operators referred to above.
Explicitly, if # is an e-subvariety of &% or .#L and #C, =% ® Y, then we also
have (#°)Co =(#F)2 % for any P {T,.T,,K,,K,}.

For any variety of groups £, we denote by A the largest variety of inverse semi-
groups having E-unitary covers over .. The second main result of Section 5 establishes
the equalities

CS 0K =(6RH \=CRRLH,  AB N =(BOA V=B A

The first part of Section 6 is devoted to the study of e-varieties of the form #% & v
In particular, it is shown that for any e-variety ¥, 24 &7 K =4 K g0 that for
e-varieties such as #4,4.7,(, 8%, for instance, #% < ¥ = 4. For any e-subvariety
f of €R or (L, AF & f = A2 V¥ In the main result of this section, it is shown
that if ¥ is a monoidal e-variety such that #Z ® ¥ =7 then for any e-subvariety
U of €9,

R CCZaE TSR ARt T
T \(ngZ)vy otherwise.

These results have various applications to special cases. For example, 6. @ .% = Y% o
(ARINS), CS RB=LGRB, €SI =LGARINVI), CFSRC=FFo(.

One surprising outcome from this work is that less is gained by consideration of
products of the more general forms ## & ¥ and 6.9 ® 7 than might have been
expected. From the results referred to above, we find that for any e-subvariety ¥ of
CH or (L,

AR =RAABN A

while in the final result of the paper it is shown that for any e-variety 7 with
RE C A CCA,

CS @ ="
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2. Preliminaries

In general, we use the notation and terminology of Howie [9] and Petrich [21]. For
background on varieties of algebras, consult Gritzer [4].

Let 4 and B be nonempty sets. We denote by 4% the set of all mappings from B to A.
If 0 A®, then 0 denotes the equivalence relation on B induced by (. The equality
relation on any set is denoted by 1.

For any semigroup S, we denote by S' the smallest monoid containing S; that is, S
itself if S is already a monoid, and SU {1} otherwise. The set of all regular elements
of S is denoted by Reg(S). In general, Reg(S) is not a subsemigroup of S. Hall [6,
Result 2] pointed out the following useful result.

Result 2.1. For any semigroup S, Reg (S) is « subsemigroup of S if and only if the
product of any pair of idempotents is regular, that is, E(S)* C Reg(S).

Throughout this paper #.% stands for the class of all regular semigroups. Let
SeRY. Then E(S) denotes the set of all idempotents of § and C(S) denotes the
core of §, that is, the subsemigroup of S generated by E(S). If x& S, then V(x) is
the set of all inverses of x; if x belongs to a subgroup of S, then x~' is the inverse
of x in that subgroup and x” =x"'x. The sandwich set of elements x and y of S is
S(x, y)y=yV(xy)x.

Let S€c#4%. If 0 is an equivalence relation on S, then 0° denotes the greatest
congruence contained in 0. If 0; and 0, are equivalence relations on S, then clearly
(0, N0, )0 = 0]0 n 030.

For any nonempty class # of regular semigroups we define H#, S;# and P# as
follows: H% is the class of all (regular) semigroups that are homomorphic images of
semigroups in #; S;# is the class of all regular subsemigroups of semigroups in #;
P is the class of all direct products of semigroups in #.

As in [7], a class # of regular scmigroups is called an existence variety, or e-variety,
if H% C 4, S¢ C 4 and P« C %. The class of all e-varieties of regular semigroups
forms a complete lattice under inclusion, and is denoted by Z..(£Y).

Let .o/ be a subclass of #%. We denote by (.</},,. the e-variety of regular semigroups
generated by /. Furthermore, the lattice of e-subvarieties of an e-variety # shall be
denoted by Lo (%).

The following e-subvarieties of .#.% will figure prominently in our discussions:

7 — the e-variety of all trivial semigroups;

Y — the e-variety of all semilattices;

L ¥ — the e-variety of all left zero semigroups;

RH — the e-variety of all right zero semigroups;

AA — the e-variety of all rectangular bands;

A — the e-variety of all bands;

% — the e-variety of all groups;

£9 — the e-variety of all left groups;
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#% — the e-variety of all right groups;

/% — the e-variety of all abelian groups;

Ae4 ~ the e-variety of all rectangular groups;

%.% — the e-variety of all completely simple semigroups;

%A — the e-variety of all completely regular semigroups;

4 — the e-variety of all inverse semigroups;

( — the e-variety of all orthodox semigroups.

Given e-varieties # and 7 of regular semigroups, their Mal’cev product ¥ o’
consists of those regular semigroups S for which there exists a congruence p on §
such that S/pe ¥ and epe % for all e € E(S). In general % o ¥ is not an e-variety
(see [10]). But for certain choices of e-varieties # and ¥, #o ¥ is indeed an
e-variety.

Result 2.2 (Reilly and Zhang [24, Section 5)). If # € {L L, R, RB, G, LG, #Y,
¢S} and 1€ Loy RS, then U oY is again an e-variety.

The following operators on %,.(#.%") were introduced by the authors in [24]: for
any % € L. (AS),

U= PGoU, AU =AG o,
W =¥ o, W= ps o

It is easily verified that 7,, T,, K, and K, are closure operators on %,.(#.Y"). We also
have the following useful characterizations.

Result 2.3 (Reilly and Zhang [24, Section 5]). Let % € 4,(A£Y). Then
(i) #h ={Ser7|S/(nn L) eu},
(i) w ={Sc A7 |S/(rVA#) € U},
(i) #7 ={Scr9s|S/ L cwu},
(iv) #" ={Secrs|S/A cw},
where m={(a,b) €S x S| V(a)=V(b)}.

The next result will be used frequently in Section 4. The first part is specialized
from the proof of {17, Ch. 32, Theorem 8], and the second part can be easily verified
by using the same type of argument as in the proof of [32, Corollary 6.5].

Result 2.4. For any #, ¥ and # € L. (RS, we have
(@) #o(f oW YC(Wo¥ Yol und
(b) if .1 C LY, then (U o (¥ oW Yordor SUUOY Yor © W Yer.
The operators C and L are defined on ¥,.(#A.%) as follows:

UC={SeRS|C(S)eU}
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and
WL={S e RS |eSec ¥ for all e € E(S)}.

These two operators were introduced by Hall in [7], where the notation # and %'
are used and it is shown that #C, #L € ¥, (AY") and that both C and L are clo-
sure operators on %, (#.Y"). The commutativity of C and L with other operators was
considered in [26].

A regular semigroup S is called E-solid if for all idempotents e, f,g €S such that
eLf Ay there exists an idempotent # €S such that eZh.%g. We denote by &% the
class of all E-solid regular semigroups. It is well known that £ is an e-variety of
regular semigroups and 6. =(64)C =% o.4 (see [5, 8, 31]). The e-varicties &%
and ¥ L will play an important role in this paper.

3. Products of e-varieties

Recall that a relational morphism between two semigroups S and 7 is a relation
7:8 — T such that (for example, see [30]):

(1) st# ¢ for all s € §;

(1) (st)(tr) € (st)7 for all 5,1 € 8.
Equivalently, 7 is a relation whose graph

g(O)={(s,0)eS x T |t €s1}

is a subsemigroup of S x T that projects onto S. A relational morphism 1:S— T is
called injective if st e # () implies s =1t, and is called surjective if rt=' ={s€ S|t € st}
£@ for all r€ T (see [3, Chs. XI and XII] or [23]).

Let S, 7 € £9. A relational morphism 7:S5 — T is called regular if g(t) is a regular
subsemigroup of S x 7.

Following Jones and Trotter [12], we say that a regular semigroup S regularly divides
a regular semigroup 7, denoted by S <, 7. if there is a regular subsemigroup R of T
and an epimorphism of R onto S. The relation <, in general is not transitive.

Result 3.1 (Reilly and Zhang [25]). Let S.T € A Then S<,T if and only if there
is an injective regular relational morphism from S to T.

Let S and T be semigroups. A feft uction of T on S isamap 7 xS — S5,(t,s)— 's
satisfying: (i) "(2s)=""g and (i1) ("s))('s2) = (s1s2), forall ,£;,,€ T and 5,5/, 5: € S.
If 7 is a monoid, the action is left unitary if ‘s =s for all s € §. The semidirect product
ST of § and T, with respect to this left action, is the set S x T with the operation
(s1.4)(s2,82) = (s1"52,212). The dual concepts are the right action of T on S and the
reverse semidirect product S %, T.

A special case is the wreath product of arbitrary semigroups S and 7. For
each f:T' S and €T, let 'f:T' =8 be defined by x("f)=(xt)f. Then the map
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(t, f)—"f defines a left action (left unitary whenever 7 is a monoid) of T on s,
the wreath product S®@ T of S and T is the semidirect product S” «T of S and T
with respect to this action. The dual concept is the reverse wreath product S %, T.
The regularity of semidirect and wreath products has been studied by Nico [19] and
Skornyakov [27]. The following general result was proved by Jones and Trotter.

Result 3.2 (Jones and Trotter [12]). Let S, 7T € 2Y. For any left action of T on S,
we have
(1) if either S€ %G or T€ Y, then S * T is reqular;
(ii) if either S€ 6 or T€6Y, then Reg(S * T) is a regular subsemigroup of
S*T.

Clearly, the analogues of Result 3.2 for wreath products, reverse semidirect and
wreath products also hold.

Let %, ¢ € Lo(:#9) be such that either # C 6.9 or ¥ C%.%. Following Jones and
Trotter [12], we define the semidirect product 4 =+~ of % and ¥ to be

Se, Te ¥ and whenever
UV = <Reg(S * T')| T isamonoid itsaction on >
S is left unitary

er

and the wreath product % @ " of 4 and ¥ is
UV =Reg(SRT)|Se¥, T,

Similarly, their reverse semidirect product and reverse wreath product are denoted by
W *. 4 and # ©,7 . For the case where # C ¥, these products were introduced and
studied by the authors in [25].

The following results will be needed in the sequel.

Result 3.3 (Jones and Trotter [12]). Let U, 4 € Lo (RS be such that either U CE.S
or + C%6.Y. Then

@y ot =21,

(b) if U =+ is contained within either §&% or JL,

Uxov ={S€AS|S<,Reg(R*T) for some Re # and T € 1}
={ScAY|S<,Reg(R&T) for some Re ¥ and T € ¥ }.
Result 3.4 (Jones and Trotter [12]). Let %, ¢ € Lol RS with + C6.5. Then

(@) o CIL if and only if 4 C IL, and
(b) U= C &Y if and only if either # CE€S or both #C &S and ¥ C ¥%.

Result 3.5 (Jones and Trotter [12]). Let #.7 € Lo (RS with % C 6. Then
(a) Wy C.IL if and only if either + C 6.9 or both % C A und v C ¥L, and
(b #+ v C&Y if and only if +" CEY.
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Result 3.6 (Reilly and Zhang [25]). Let % € L, (9N\{T } and +" € Lo {AS) be such
that ¥ C%. Then U@+ = (L2 N UYoV V. In particular, ¥V =41

Lemma 3.7. Let U € Lo( RS and 1 € £ (G). Then
(@) U * o C{U Yt e
(b) U =W %, V"

Proof. (i) Let S€# and G € 7. Then for any left unitary left action of G on S, the
projection map p:(s,g)— g((s,g) € Reg(S * G)=S * G) is an epimorphism of S* G
onto G such that 1 p~' =S, where 1 is the identity of G. It follows that SxG € # o 1~
whence % 1 C (W 0 F Yoy

(i) This follows immediately from Margolis and Pin [16, Proposition 1.3 and its
dual]. O

Lemma 3.8. Let S.T €AY be such that S <, T. Then
GeS<,GeT and S@GCG<,. ToHG
for any Ge 9.
Proof. Let G< 4. Since S<,T, then by Result 3.1 there is an injective regular rela-

ttonal morphism 7: S — 7.
() G S<,G®T. For each (¢.s) € G S, we let

{ € st and ¢ satisfies
(p.s)yi=q (. 0)eGaT (i) lrp=150;
(ii) x € y1 implies x¢p = vo

To show that G & S <, G = T, it suffices to show that 7, is an injective regular relational
morphism. Since t:§— 7T is injective, we then clearly have that (¢,s)t, # ¢ for all
(p,s)e GRS, Let (¢1,51).(p2.52) € Ga&S, ((/);J] YE(P1.51)T) and ((/)2,12) €(p2,5)71.
Then #; €517 and f €557 so that 11> € (5152)1. Since (1,5 )(@P2,52) = (@1 '@2,5152),
(p1.01 X d2.12) = (1 "¢p2,1112) and
Ir( "p2) = (I Nt 2)
= (ls@1)(s192)
= ls(@1 "p2),
and if x € yt, then xf; € (y1)(577) C (¥s1)7 and
x(P1 ") = (x¢))(xt1¢2)
=(yvp1 ) vs192)
= y(@1 "'p2).

it follows that (¢1.41 )(d2. 12) € ((@1.51 W @2,52))71. Hence (@1, 51)t1(@2,52)T1 S((@1.51)
(@2.52))71, and therefore 1, is a relational morphism.
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We now show that 7; is regular. Let (¢,s)€ G &S and (¢, 1) € (¢,s)t). Then t € s1,
and there exist s’ € V(s) and ' € V(¢) such that ¢ €5't. Let ¢ : S — G be defined by
v =(vs'@)~! for all ve€S', and ¢, : T' — G be defined by x¢; = (xt'¢p)~" for all
x € T'. Routine calculations now show that (¢,.5) € V({(@,5)) and (¢, ') € V((¢.1)).
Since

lrpr=(7'd) ' =(1ss'0) ' = 1501,

and if x € y1, then xt' € (vs')r and
xpr ="'y =(v'0) " = yo,

it follows that (.)€ (¢1.5")1;. Hence, g(t)) is a regular subsemigroup of (G & S) x
(G T), and so 1| is regular,

We finally show that 1y is injective. If (¢,1) € (¢1,51)T1 N(@2,52)7), then r €51 N2t
so that s, =1, since 7 is injective. For each y € S, there exists x € T such that x € yrt.
Thus vy =x¢ = ve, and lgp) =17¢ = ls¢,, that is, ¢ = ¢,. Hence 1) is injective.

(b) S©G<, T (. For each (¢p,g) €S &G, we let

(p. )t ={(p. )T 2G| xp € (x)t for all xe 4}

Clearly, (¢,¢g)t2# ¢ for all (¢.y)e S @ G. Arguments similar to those in (a) prove
that 7, is also an injective regular relational morphism from S & G to T & G. Hence,
SeG<, TG, O

Lemma 3.9. (a) Let G, Gy €% be such that G<,Gy. Then GRR<,G,®R for any
ReRY.

(b) Let S.T € 6. be such that there is an embedding ©:S — T. Then Reg(S & R)
<,Reg(T @ R) for any Re AY".

Proof. (a) Let R€ 2. Since G <,G|, then by Result 3.1 there is an injective regular
relational morphism t: G — G,. For each (¢,r)€ G %R, we let

(@, 1)1 ={($.r)EG 2 R|xpp €(xep)t for all xER'}.

The same type of argument as in the proof of Lemma 3.8 yields that 7, is an injective
regular relational morphism from G &R R to G; ® R, so that G @R <, G ®R.

(b) Let Re A%, To show that Reg(S® R)<,Reg(T @ R), it suffices to show that
there is an embedding 7, : S®@R—T 2 R.

For each (¢,r)€S® R, we let (@.r)t) = (¢1.r), where @1 : R' — T is defined by
x(¢1) =(x@)t, for all x€ R'. Clearly, 1, maps S&@R into T@R. If (¢1.r1),(p2.12) €
S &R, then

(@1, r)T1(@2.72)T1 = (@1 T, 7 2T, 72)
= (i1t (Q21),7172),



66 N.R. Reilly. S. Zhang! Jowrnal of Pure and Applied Algebra 135 (1999) 57-91

and for any x € R', we have
x(11"(@21)) = (x1 )t(xr 2)1
= ((x@ )(xrp2))T
=x(¢) "p2)1.
so that
(@r.r)t(p2,72)t = (11" (@27). r172)
= (1 "'p2)T.1r112)
= (@1 "p2.rir2)Ty
= (@1, 11 N2, 72))T1s

whence 1, is a homomorphism. If (¢, )11 =(¢2.7r2)7(, then »| =r; and @17 = o1,
that is, (x¢ )t = (x@;)t for all x € R'. Since 1 is one-to-one, it follows that ¢, = ¢>.
Hence 1; is one-to-one, and therefore 7, is an embedding. [

In order to describe the operator K,, the authors introduced a special type of wreath
product structure in [25]. Let ¥ be a non-trivial semilattice with identity 1 and let T
be an arbitrary regular semigroup. Then the wreath product ¥ ® 7T of ¥ and T is not
necessarily a regular semigroup. Let

(Y@ ={(f.tyeYe T |for x€T, x Axt impliesxf =1}.

Then by [25, Lemmas 6.1 and 6.2], (Y & T)" is a regular subsemigroup of ¥ & T
such that the projection of (¥ & 7)* onto T induces a congruence over £Z. For any
U e L (RY), we let

g u= (Y oY e and Te ),

Then we have the following results.

Result 3.10 (Reilly and Zhang [25]). Let # € L (AY). Then

w i UC:

S w = . ,
) { R otherwise.

Lemma 3.11. Ler # € 4.(6F). Then

S u={Se RS |S<(Y' TV forsome Y€ and T € U}.

Proof. Let % = {(Y' @ T)*|Y € ¥ and T € #}. It is clear that for any indexed fami-
lies {Y;}ies. {T;}ics of regular semigroups such that for each i€/, ¥; €% is a monoid,
there is a natural embedding from [[,., (Y& T;)into (J];c, ¥i) @ (I, To). 1t follows
easily that

et <, (H Y,-> &* <HT>

icl i<l i€l
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so that P¥ CS,% . By Result 3.10 and [24, Lemma 7.4], # C &% implies that
& C Uk CEY. Making use of [33, Lemma 4.8], we therefore obtain that

S @ U =HS,Py CHS,S, ¥ =HS, % C.v "7,

that is, .’ &* # =HS, # ", as required. L[]

Lemma 3.12. Let S, T € 2 be such that S <, T. Then
(Y'e8$) <, (Y'en)*
for any Y € 9.
Proof. Since S<,T, then by Result 3.1, there exists an injective regular relational
morphism 7 : 5 — 7. Let Y € .. Similar to the proof of Lemma 3.8(a), we let

t € st and ¢ satisfies
(p.5)t1 =< (p.)e(Y' & T (i) l7¢ = ls¢;
(i1) x € yt implies x¢p = yo

for any (¢@,s)€(Y' 2 S5)*.
We first show that (¢,s)t; # ¢. Let t €st. Then there exist £ € V(t) and s’ € V(s)
such that ¢/ € s't. Define ¢ : T' — ¥! by

lsop if x=17,
xp=4{ v if xe€ yt for some y €S,
| otherwise.

Since 7 is injective, ¢ is well-defined, so that (¢,£)€ Y!' @ T. To show that (¢p.1)€
(¢,s)1y, it suffices to show that (¢, 7)€ (Y @ T)*. So let x& T be such that x.#xr. If

x € yt for some y €S, then xr € (ys)r, so that there exist (x¢) € ¥V (xt) and (ys)’ € ¥ (1s)
such that (xt)’ € (vs)'t. Also, x#xr implies that

x=(xt)xt)x € yrN(ys(ys) vz,

it follows that y = ys(ys) y. Thus yZys, and so x¢ = yp = 1. Hence (¢.1) € (Y & T)*,
and therefore (¢,s)7) # ¢.
The rest of the proof proceeds exactly as in the proof of Lemma 3.8. [

We conclude this section with the following useful observations.

Proposition 3.13. (a) For any 1 € L. R9"). we have
RBRY =(LZ A WN(RLET).
(b) For any # € %, (#e%) and any 1 € L, (RS, we have
Ut =(UNRBYD I (UNGYe o).

In particular, #eG 1 = RAR A VG Y.
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(c) For any ¥ € £.(9) and uny fumily {W,},ca of e-varieties such that
Vyes #: € IL or EF, we have

(\/ u/@) @4 = \/ W,

2€A 2€A

Proof. It is well known that for any indexed family {S;};c; of regular semigroups
and any regular semigroup 7', there is a natural embedding from (][, S;) @ T into
[Tic/ (Si®T), so that Reg(([[,¢, Si) @ T) <, [;¢, Reg(S; ® T') whenever Reg((J],¢, )
® T) and Reg(S;® T) (i € ) are subsemigroups.

(a) Since any rectangular band is the direct product of a left zero semigroup and
a right zero semigroup, it follows from the above remark that

ABD Y

(Reg(S®T)|SeABTct),,
(Reg((LxRYRT)|Lc LY . RERF TEV),,
(Reg(L& T) x Reg(R&T)|Le L # ,RERYL,TEY),,
(L2 @I (AL D).

ol

N

The converse is obvious.

(b) This follows similarly as in (a) by using the fact that any rectangular group is
the direct product of a rectangular band and a group.

(c) Let #y€ Lo(RY) (x€A) and ¥ € ¥,,(%) be such that \/164 U, C IL or 6.
Then by {33, Lemma 4.8], we have

\/ Wy = {Se%f/’

264

S<,<HS, for some S, € /le(oceA)}.

xeA

It follows by Lemma 3.8 and the above remarks that

(\/ %) @Y = <S:x3 T
2EA

<<HS> @T ‘ S, € u for each x4 and T € 1>

2CA

2CA4

Se \/ J//Z,Te'/‘>
et

N

or

N

\ ST |Seu,Ter),
x4

:\////1@1:

2EA

The opposite inclusion is obvious. [
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4. Some associativity results

Using the relationships between semigroups and complete transformations, Eilenberg
[3] and Tilson [30] proved that the (standard) wreath product of (pseudo)-varieties of
(finite) semigroups satisfies the associative law. For a slightly different wreath product,
Koselev [15] also announced that the associative law holds. However, Peter Jones has
drawn our attention to the fact that there appear to be some gaps in his proofs. In this
section we modify Koselev’s techniques and establish some associativity results on the
products of e-varieties introduced in Section 3.

Lemma 4.1. Let S,T\.Rc AY.

(a) There is an embedding 1, . (SR TYOR—S@(T' @ RY).

(b) If S€%, then there is a homomorphism 13 : (S@T)QR' =S (T @R") such
that T; is over L%,

Proof. (a) For each (g,r) € (S@ T)®@ R with xg = (f,¢) for all x € R', we let (g,r)1,
=(@.(y.r)), where y : R' — T! is defined by xp =1, forallxeR' and o : T' @R' - §
is defined by (p,x)@ =(1p)f, for all (p,x)€ T' @ R' (note that 7' @ R is a monoid).
Clearly, 1, is well-defined.

We first show that 1, is a homomorphism. So let (¢.7),(g,71)€(S® T)® R with
xg = (P t;) and xg; = (yy,5¢) for all x€R', and let (g,7)t; = (@, (¥,7),(g1,r1)11 =
(1, (4, r1)). Then

(9:7)g1.r1) = (g g1, 1)

where, for all xeR',
x(g"g1) = (xg)(xrgy)
- (ﬁ.\’s Iy )(7.\‘;‘, Syr )
= (/))\ [\}"xr‘s LeSyr )

If we let ((g,7)g1,71))t1 = (@2.(f2,7r1)), then we have
XY =tes,, for all xeR!
and
(P x)p2 = (IpX Sy ")
=((Ip)BAAp)teyyy) forall (px)eT @R (1)

Now

(g.r)ti(gr,r)t = (@, (4, r)) @1 (Yr.r1))
= (@Yo, (Y i), (2)
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where, for any x € R', we have

x(Yyn) = (xy)xrgn ) = teser = X,
that is, Y/, =n. For any (p.x) € T' @ R', we have

(p. XX p1) = (p.x)p((p. X)W, 1))
= (Ip)B(p* Y xr)p
= (Ip)B (1 p Y )yar
= (Ip)BI Y )yer
= (p.x)p2,

that is. @'¥-"'@; =¢,. Thus by (1) and (2), (g.7)ti(g1.r)T1 =((g,7)}g1,r1))t1 and
hence 7, is a homomorphism.

We now show that 7, is one-to-one. If (g,7)t; = (gy.7 )71, that is, (¢, (¥, 7)) = (¢,
(Y1,71)). It follows that r=r;, y =1, and ¢ =¢,. For any x€R', we then have
ty =xy =xyn =s, and for any mapping p: R' — 7', we have

(Ip)fe = (p. Yo =(p.x)p1 =(1p)ys.

Since T!= U, lp, it follows that fi, =7, for all x€R'. Thus xg = (B, £,) = (3. 8) =
xg, for all x €R', that is, g=g,. Hence (¢.7)={(gi.r1), and therefore 7, is an embed-
ding.

(b) Let S€%. If T is a monoid, the assertion follows from (a). So we assume that
T is not a monoid, which implies that 7 & R' is also not a monoid. As in (a), for each
(¢.7)E(S@TYRR', let (¢, r)T2 =(@.(f.r)), where ¢ : R' — T is defined by xy =1,
for all x€R' and

Yy (TeR)Y =S

is defined by (p,x)p=(1p)f, for all (p,x)cT::R', and lo=1f. Clearly, 1, is
a mapping of (S®T)®R' into S« (T @R'"). As in (a), it is a straightforward verifi-
cation that 7, is a homomorphism.

We now show that 75 is over 2. So let (¢.r).(g1.r1)E(S @ T)®R' with xg=
(P, ) and xgy = (7, 5y) for all x & R'. be such that (¢.r)t2 =(g1.r1)12 = (@. (W, r))=
(@1, (Y1, 1)) is an idempotent of S:(T5RY). Then ¢ =@, Yy =1, and r=r. Since
(@, (W r) e, (Y, 7)) = (@ "o, (W 2)) = (p, (Y1, 7)), we have @ = @'V "D, f ="t
and r € E(R"). Thus for any (p.x)< T @ R', we have

(Ip)fe = (p.x)op
= (p.x)@"V ")
= (P, X)p{(p.XWY.7))p

= (p,x)e(p .xr)e
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= (I1p)B((1p)x))per
= (1p)B((1p))yer

so that ((Ip)ty ) =1, the identity of S (S is a group). Let p:Rl — T be such that
ip=t.t. for some t, € V(t,) in T. It follows that .7, =1 for all x€R'.
Now we have (g7 )(¢1.7)=(g"g1.r) and for any x € R',

x(g" g1 = (xg)xrgy)

= (/}.\" I‘A\‘ )('}'_\»,-,S\-,« )
= (B e Lisr ). (3)
Since =y, and ¥ =/, then for any x € R', we have
oSy = (XY )(XI‘!IJ[ )= X(l//ll,&) =xj =1 4)

Also, @ = and ¢ = ¢'""¢ imply that
(p.x)p =(1p)f,
=(p.x)""" )
= (p.)P((p.x)(W. 1))
=P p . xr)o
= (Ip)B(1p)r)yer  for any (px)€T @R
It follows that for any y €T,
VB = (B = Y(By ")
and
18, = (15 0tnr)  since £y, =1
= 1B "),

that is, f, "=, = B, for all x € R'. It follows from (3) and (4) that (g.7)(g1,7)=(g.r),
whence (¢, (. 7))t~ is a left zero semigroup. Hence 77 is over .¥.%, as required. [

Corollary 4.2. Let G4, T €6 and R€ RS be such that R is a monoid Then
there is a homomorphism

7:Reg((GrT)oR)— GxReg(T & R)

such that T is over L7,

Proof. As in the proof of Lemma 4.1(b), for each (g,r) € Reg((G & T)@ R), let (g,r)t
=(¢@.(y.r)), where y : R — T is defined by xiy =1, forallx€R and ¢ :Reg(T & R)— G
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is defined by (p,x)p = (1p)f, for all (p,x)€ Reg(T ® R), and 19 = 1f;. Since (g,r) €
Reg((G ® T)®RR), it follows easily that (Y, r)€ Reg(T ®R), so that (g, r)t=(¢p,(Y,r))E
G ® Reg(T & R). Since for any fixed r€ T, if we let p,:R— T by yp, =t forall yeR,
then we have (p,,x) € Reg(T @ R) for all x€ R, it follows from the proof of Lemma
4.1(b) that 7 is a homomorphism of Reg((G & T)® R) into G ® Reg(T ® R) such that
Tisover 2. O

Lemma 4.3. Let SR, T €AY be such that R is a monoid. Then
S Reg(T @R)<, Reg((S & TFY@ R)

if(a) S€9, Te6Y; or (b) SSREY; or (¢) T.Re%.

Proof. Note that, by Result 3.2, in all three cases both S ®Reg(T ®R) and
Reg((S ® TR)® R) are regular. Also, T® is a monoid if and only if T is a monoid.

We define 7:S& Reg(T & R)— Reg((S® TR)®HR) by: for each (¢, (Y,r)ES®
Reg(T ©® R) so that

¢:Reg(T®R) —S, WY:R—T. rcR

we set
xg=(f, hy) for allx € R,
where

(Yh,="Y:R-T;
(0. (Y. r))T=< (g.F)EReg((STHY&R)Y | (ii) fy (TFY' =S with
B =(p,x)p,if pc TX and
(p.x)€Reg(T @ R);

(i) 18 =1, if T is not a monoid

Note that 7 is not, in general, a function since 1, is unspecified except for x =1, the
identity of R. In cases (b) and (c), it follows from Result 3.2 that S @ Reg(T @ R)=S5S®
(T®R) and Reg((S2 TR 2 R)= (S 2 T*) % R, and so clearly (¢, (y,7))t #0. In case
(a), we let (¢,rYe(Se TFYQ R with xg=(f. k) for all xc R, where h, = “ and
B (TR = S is given by

p (p.x)p if pc TR and (p,x) € Reg(T @ R);
PP= 1o otherwise,

where p&(TR)'. To show that (g.r)€ (¢, (,r))7, it suffices to show that (g,r)€
Reg((S® TRY®R). Since (@, (.r)€S@Reg(T@R), it follows that (,r)€
Reg(T & R), and hence there exists (y,7" )€ Reg(T @ R) such that (7)€ V((y,7)),
so that y =y Yy "' and ' € V(r) in R. We now let (g,,7') € (S® T®)® R with xg) =
(v fi) for all x € R, where f, = ‘Y and 7, :(T)' =S is given by py, =(pfifer) ™"
in S. It is straightforward to verify that (g;,7 )€ V((g.r)) in (S® T®)® R, whence
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(9.r)EReg((S@ TR @R) and (¢,r) € ((¢,¥), 7). Therefore (@.(y,r))r#0, for all
(. (Y, r))eS & Reg(T ©R).

We now show that 7 is a relational morphism. So let (¢, (Y, 7)), (@1, (Y1, r1 ) ESE
Reg(T & R). (g.r)€ (o (¥.r))e and (g1,r1) € (@1,(41.71)). For any veR, we let
xg=(f.hy) and xg1 =y, fv). Thus (g,7)(g1,71) = (¢ g1, +r1) and

x(g"g1) = (xg)xrg1)
= (/))V\‘a hy )(A)’xr- f\l)
- (ﬁ\ s Tirs h\f\l) fOI‘ any x S R.
We want to show that (¢"g1,r71) € ((@, (. 7)) @1, (b, r)NT= (W01, (W rri ).
Since Ay for =CY)CY1) ="(Y"yY), it follows that (i) holds. For any pe I'® with
{(p.x)€Reg(T ®R), we have
P(ﬂ\ /1\7,\'1') = (p/))\)(])h\ )A/".\'r
= (PP P )i
=(ph P Y, xr)p)
=(p.x)p((p.x)(.r))p1  since (Y,r) € Reg(T @ R)
=(p.x)Ne" 1),

so that (ii) holds. If T is not a monoid, then

1B ") =B
=B
=o)Xy, r)p
=191,
so that (iii) holds. Hence (¢,7)Xg1.r1)=(g"g1.rr1) € (@ @1, (Y Y1,#r1))z, and there-
fore 7 is a relational morphism.

We now show that 7 is injective. If (¢g,#) € (@, (Y, r)) 10y, (Y,.r))1, then we have
F=ri, hy="Yy=fi= "y, for all xeR, so that Y =, by letting x =1, the identity
of R. Also, for any ( p.x) € Reg(T @ R),

(p:x)p = pP= piv=(p.X)P1
and if 7 i1s not a monoid,

lo=1p=1y,=1¢, so that p=¢,.

Thus (¢, (Y, r))=(@1.(¥,r1)), and hence 7 is injective.

To show that 7 is regular, we consider two cases:

(a) and (b): Note that S is a group. Let (¢,7) € (¢, (},r))1. Since (i, 7)€ Reg(T QR),
there exists (i, )€ Reg(T ® R) such that (1,7 )€ V((¥.r)). 1t follows that =
Y'Y " and € V(r) in R. Define ¢, :Reg(T @R) — 8 by poy=(pQ,r )e)"!
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in S, for all peReg(T ®R). We claim that (¢y,(y1.")) € V((@,(¥.F))). First we
have

(@ (W r)n W D) (W) = (@ 1. (U, D), (7))
= (@0 o (T )
= (@) g, ().

For any p<Reg(T @R)', we have
p@V "0y = (pp) p(h.r ) (P Y, )
= (po) pWr, r Y. r ) (p( Y. )
= (pX pW b rrYo) (P, 1))
= pp since S is a group

it follows that @ =" W -7 Hence (@.(f,r))=(@.(%.r)) (@1, (1. 7)) (o,
(,r)). Similarly, (@1, (r.r")y= (@1, (1. 7))@ (. r ) @1, (Y1, #")). Therefore (¢,
W, ) eV, (Y, r)). We now let (g).#)€ (S TRY®R with xg, = (3., fi) for all
x €R, where f.= "y and 7, :(T*)' — S is given by py,=(pfifier)”" in S, for all
p (TR, We claim that (g,,#")€ V((g,r)). First, we have

(9. r)g1. 7" Wy 7)Y = (g 9.9, 7).

For any x €R,

x(g 91" g) = (xgNxrgi Nxr'g)
= (o By Sor W sy Bcerr)
= (B3 M B b ferhans)s (5)
while

By ferheres = CUCT YD) = X "") = xyp = by,
and for any p € (T®)', we have
PB 70 " Bern) = (DB PR W P Sor Brrer)
= (PRI PhSxrBer) ™ (PheferBuerm)
= pf, since S is a group,

whence fie = ey ol Boe. It follows from (5) that (g,7) = (g,#)Xg1.# g, r). Sim-
ilarly, (g1,7")(g.7)(g1,#")=(g1.7"). Thus (g.r)eV((g.r)). If peT* and (p.x)€
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Reg(T &z R), we then have

pre=(pfefe) !
=((pY.xr' o)™ since (p*Yi,xr’) € Reg(T @ R)
= (.1, 7Y
=(p.x)p1,

so that (i1) holds. If 7 is not a monoid, then

1;,] = (,f]/jr/)Vl
=Wh)!
= (. )p)"" since (Y1.r") € Reg(T @ R)
- ]([)].
so that (iii) holds. Hence (¢;,#") € (¢, (1.7 )1, and therefore 7 is regular.

(¢): Note that both T and R are groups. Let (g,7) € (¢, (¥,r))r. We define Y, :R— T
by wn=(wr~"Y) 'in T, and let ¢, : T %R —S by

(p.)p) =((p.X)p1.r Do)

for some ((p.x)y,r~ Y)Y € V((px)W.r—p) in S, Since (i, r)(hrr")=
(Y Y, 1) and for any vER,
YW ) = )ndn)
= ()=
=1, the identity of 7,
it follows that (\,r)(;,7~") is the identity of T @ R. Thus, by the same arguments
as above, (@1, (Y,# 1)) € V((@,(¥,r))). For each x € R, we let f, =" and let 7,:
TY — S be defined by py.=(p,x)@,. Thus (¢,,r~")e(S@TH@R and (g,.r7 )€
(o1, (Y 7)1, where xg1 = (., f2) for all x € R. For any y € R, we have
}"(hxf..\‘r) - (,Vh,\' )(y./‘.‘rr‘)
= (vxy)(yxryn)
= () yxrr ™ gy
=1, the identity of 7,
it follows that A, f,, is the identity of T® for any x € R. Again by the same arguments
as in (a) and (b), we have (¢;,r~') € V((g.r)). Hence 1 is regular.

In all cases, we have shown that t is regular. Therefore by Result 3.1, S®
Reg(T & Ry<,Reg((S@ TRYy®R). O

We are now ready to prove the following result.
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Theorem 4.4. Let U, ¥, % € Lo (#Y). Then the associative law
U QU Y=(US LYW

holds for the following cases:
@ UNVH CGand 1 CES,
b)Y ¥’ vVH# CbGand W ES or IL.

Proof. (a) If ¥ € %, (%), then the equality follows from [18, Theorem 21.51]. So we
assume that ¥ ¢.%,(%). Let Ge ¥ and Re ¥ & #" By Result 34, ¥ Q¥ C&Y.
Then by Result 3.3(b) and Result 3.2(a), R<, T > G, for some T€¥ and G, € #. It
follows from Lemma 3.8 that

G&R<,GR(T®G).
Thus by Lemma 4.3,
GRR<,GR(TRR)<(GETT)DR,

while the latter is in (# ¢ )@ #, it follows that GRR& (¥ Q@ ¥7)® #. Hence
U QNVC(URIV Y H.

For the opposite inclusion, we let Re # @ ¢/ and G € ¥ . We also assume that
U # 7, otherwise, it is trivial. By Results 3.3(b) and 3.5, R<, G, ® T for some G, ¢ #
and 7€ v . It follows from Lemma 3.8 that R¢: G <,(G; ® T)® G. There are two
cases:

(i) If T is a monoid, then by Lemma 4.1(a),

RZEG< (G &T)2G<,G a(TeG),

the latter is in % @ (¥ & #), it follows that R&GG e U (¥ W),

(ii) If T is not a monoid, then by Lemma 4.1(b), there is a homomorhism 7:{G; © T')
®RG— G @(T®G) such that T is over L.#. Since G, (TR G)EU (¥ @ H"), it
follows that (G, R TYRG € L% o (W (4 & #')), and therefore so does R® G. Since
U e L(GN{T}, "¢ Lo(%) and by Result 3.6, we have

LUV RHN=LLALZN U (F W Ver
CULLoALZLNU(S Y ) by Result 2.4
={(LIZNVUYL W N
=WE (L SH),
it follows that R@Ge ¥ & (¥ ¢ #). Hence (/@Y )YQH CUHR(F @ #7), and

therefore % Q¥ Q@H# V=(UR ¥ )= W.
(b) This follows similarly by using Lemmas 4.1 and 4.3. O

Let .# be the class of all regular monoids. For any # € L, .(#.%), we say that %
is monoidal it U = (U O.#)... 1t follows from [26, Corollary 4.5] that % is monoidal
if and only if # satisfies the condition that S € # implies S' € 7.
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Theorem 4.5. Let # € Lo (RS be monoidal. Then
UL W Y=(USV YW
Sor any U, ¥ € Lo (9).
Proof. Let #.7 € %.(%). If % =.7 or v" =7, then the equality clearly holds. So

we assume that # #£.7 # ¥ . We also assume that % ¢ ¥,.(%), otherwise, the equality
follows from Theorem 4.4. By Result 3.6, we have

U OW )= (LENVU)(LENV L )oH Yder
C(LENVUYALZN T Vo # ) by Result 2.4
= (LI NI )) oW Yo
= (#o¥ )W by Result 3.6
=(¥@1)YRH by 18, Section 2.2].

For the opposite inclusion, we let S€ % ® ¥ and T € # . Then

S<,G G, forsome G e and G, ¥,
it follows from Lemma 3.9(a) that

SHT <G RG)RT <G G T
Since ¥ is monoidal, 7' € ¥ Thus by Corollary 4.2, we have

(Gi2GHRT' € LT oW (1 RH))

= LT o((LENVUY(V ®W ) by Result 3.6

(LLALINAU)) (T & H ) by Result 2.4
(LZNUYI DH ) er
W @(F ®#) by Result 3.6,

[

it follows that SQT e ¥ (+ & #) and hence (X QQYV¥ )XW CUR(F W)
Therefore, # (1 QW V=2 +H)2# . O

Lemma 4.6. Let Y €. be a monoid, Te #Y and G %.
(a) There is a homomorphism

(Yo @G — (Y 2(T2G6)*

such that T is over L.
B (Y (TG < (Y OTH*®G.

Proof. (a) Similar to the proof of Lemma 4.1(a), for each ( f,r)€ (Y @ T)* @ G with
xf=(ft;) for all xeG, we let (f,r)t=(¢,(,r)), where ¥:G— T is defined
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by x{y =t for all x€ G, and ¢ (T > G)' — Y is defined by (p,x)@ = (1p)f, for all
(p,x)eT @G, and lo=1f,. Clearly 7 is well defined.

We first show that t maps (¥ & 7)* @ G into (¥ :2(T ® G))*. To show that (f.r)t=
(. (P.rNE(Y (T @G)*, we let (p.x)€T @G be such that (p,x)A(p,x ), r) in
T @ G. Then ( p,x)A(p iy, xr), it follows easily that (1p)A(1p)t, in T. Since (f,,t) €
(Y@ TY, (Ip)B. =1 so that (p.x)p = (Ip)B, = 1. Hence (¢, (y.r)) (Y 2(T @ G))*,
as required.

The same argument as in the proof of Lemma 4.1(a) now yields that 7 is a homo-
morphism.

We finally show that T is over ¥2. So let (f,r).(f1.rn)eEYTY*®G
with xf=(f,ty) and xfi=(y..sy) for all x&G, be such that (f,r)r=
(fror))T=(@, (Y. r))= (1. (Y1,r)) is an idempotent in (¥ @ (T ® G))*. Then ¢ = ¢,
Yy =14y, and r=r. Since (¢,(¥.r)) is an idempotent, we have  =y' and r=1,
the identity of G. From this it follows that f. = xi = x(Y ) = () (xy ) = .5, for all
x€G. Thus (vt )y, =1 forall y& T, since (y..5,)€(Y ®T)*. Hence S, =, "7, for
all x€ G, and so (£, 1) f1.1)=( f.1). Therefore (¢,(y, 1))~ is a left zero semi-
group and T is over ¥ 7.

(b) Similar to the proof of Lemma 4.3(a), for cach (o.(.r) e (¥ @ (T & G))*, we
let

(]) hx :,\'w;
(i) (p,x)o = pf, and j ;

(o.(p.rNT =< (fr)e(Y T @G
(i) 1o = 18,

where for each x€ G, xf =(f. h )€Y & TY)Y*. Since pAph, in TY implies that
(p.x) AP, x).r) in TG, it follows easily that (@, (,r))t) #£ . The argument of
Lemma 4.3(a) applies to yield that 7, is also an injective relational morphism.

We now show that 7, is regular. So let ( f/.r)& (@, (¥,r))t;. Define , :G— T by
W = (yr~ ") for some (3~ ') € V(3 ') in T, and define @y (T 2 G)' — Y by
por=(p,r~" e forall pe (T2 G)'. We claim that (@1, (¥1,7~ ")) € V(. (h,7)))
in Y ®(T @ G). Routine calculations show that (.7~ )Y€ V((y.r)) in T G. From
this it follows that ( p(yr, )1, r N =1 forall p (T » G)', since (@, (Y, r)) (Y@
(7 & G))*. Thus for any pe(T = G)',

Pl P D) = o) pQh N P P e

=(pe) pW.r).r " N

= pe.
so that (¢, (. r)(@1, (Y17~ "N (. r)) = (@, (4, r)). By symmetry, (@1, (1,r7"))
€ V((@.(y,r)). Since p(yn.r~") 2 p(Yr.r~), r) for any p&(T ©G)!, it follows
that po; = (p(,r~"))p = 1, whence (@1, (¥1.r~ ') € (¥ (T © G))*. For each x€ G,
we let xfi = (74, ¢y ), Where g ="y and 7, : (TY) — Y is defined by py, =1, — the
identity of Y, for all pc (T9)'. It is straightforward to verify that ( £;,»~")Y € V(( f.r))
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in (Yo T9*® G and ( fi.r~"Ye (@1, (Y1, 7" )11, Hence, 1, is an injective regular
relational morphism, and therefore (Y (TGN <, (Y 2T« G. O

Theorem 4.7. Let % € £(ES) and 1€ 4,(%). Then
S (Ut Y=(S D Wyz o

Proof. If # C%, then by Result 3.10, ¥ @* (¥ 27 Y= 1 =¥ 2% ¥)e 4. So
we assume that # £ %. To show that . (¥ 1 )YC(¥ & W)z 1, let Y €4 be
a monoid and S€ # < . By Results 3.2 and 3.3, S <, R& G for some Re # and
G € ¢ . It follows from Lemmas 3.12 and 4.6(b) that

(Y& 8)Y <, (Y@ (R2G)Y <, (Y@RYY %G,

where the latter belongs to (¥ @*#)®& ¥ . Thus (¥ ©8)* € (& @* %)= ¥, and hence
S MU YT R Uz o

For the converse, let S€.@*% and Ge 7. It follows from Lemma 3.11 that
S <, (Y& TY* for some monoid ¥ €% and T < #. Thus, by Lemma 3.8, S G <.,
(Y & TY* 2G so that by Lemma 4.6(a)

SaG e Ly o (a1
C LU o(LFo(W&17)) by Result 3.10
C(LToLZ)Yo(W =) by Result 24

LI oW )
=yt

It follows that (%" @™ #) 21 C.9 @™ (# &), as required. O
We conclude this section with the following useful observations.
Proposition 4.8. For any % € 4. (IL) and V € £.(%4), we have
G WA VYC(GDUYRY
and
Sy YS (S By E

Proof. This follows immediately from the proofs of Theorems 4.4(a) and 4.7. O

5. Some sufficient conditions for ¥ @ ¥ = ¥ Cx

Let S€.2%. A subsemigroup R of S is full if E(S)CR, R is self-conjugate if
a’'RaC R for each a€S and o' € V(a). We denote by R. the subsemigroup of S
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generated by the conjugates of R in S'; that is
R.= (d'ra|r€R, acS', d cV(a)).

Let Co(S) denote the least full and self-conjugate subsemigroup of S. So
Coo(S)=C(S)ece - - -

By [31, Lemma 2.3], C(S) is a full regular subsemigroup of §.
For any % € £.(RY), let

UCoo ={SERYL | Co(S)EW}.

Then % C, is again an e-variety. This operator was introduced in [12, 25]. Its restriction
to L(6#) was studied in [34, 36], where the notation C* is used.

Result 5.1 (Jones and Trotter [12], and Reilly and Zhang [25)). For any % € L. (AS),
UCoo = (M 0DG) .

Clearly, #C, CUC for any % € Lop(A.Y). It follows from [31, Corollary 5.2] that
ES =CRC=CRC.

Result 5.2 (Reilly and Zhang [26]). Co, commutes with Ty, T,, K, and K, on
Lol RS).

Let % € 4,(#%). By Result 3.3, Lemma 3.7 and Result 5.1, we have
UQG="U%GC (WG y=UCx.

In this section we first present a family of examples to show that the equality # @ 4 =
W C,. need not hold in general. We then present some sufficient conditions for # ® %
to be equal to (# o %),.. The next result was essentially proved in [14] (see also [12]).

Result 5.3 (Jones and Trotter [12]). Let % € 4,(("). Then
URG=U*xG=UCy,=UC.

The next example presents an infinite family of e-varieties of completely simple
semigroups with the property that # @9 # % Cw.

Example 5.4. There exits an infinite family of e-varieties of completely simple semi-
groups:

YoCH 1 CH¥rC- - CHiCoe-

such that ¥; @ 9 #£ (¥;/0 %)= #/C, for all i>0.
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Proof. Let #y=.o/% o A%, and for each i> 1, we let %, =U; C. Thus #%; =,
(Cx ) for i>0. By [36, Proposition 3.7], the e-varieties #;, i >0, form a strictly
ascending sequence

U CUNC UL C oo C U C e (6)

such that \/,.20 Ui CUC CEY. Foreach i >0, let ¥;i=¥;0%. We now claim that
1iRG# (409 =14,Cy for all i >0. Assume that ¥, @ % = *;C,, for some i>0.
Then

ViRG=(UiRY)2Y
=U; (9 R%) byTheorem4.4
=U 2%
=
so that ¥;C.. = 77 and ¥;(Cx)*>=7;. On the other hand, we have
V=W G CUCoc = Uit
and
Wi =U(Cx ) CH(Cx)} = 47 C Ui,

from which it follows that ;. ; =%, and by (6), this is a contradiction. Hence
¥ @ %+ 1iCs for all i>0. From this it also follows that the e-varieties ¥;, i >0,
form a strictly ascending sequence

FoC ¥\ CH - CH C--- (7)
such that V/, S0 fi= Viso#iCUyCC6y. O

We now prove the main result of this section.

Theorem 5.5. Ler U € L(EF) U Lo IL) be such that U % =4Cy. Then
(WY G =(U")Cx for any P{T,,T,,Ks,K,}.

Proof. Consider 7,. If #C %, then #7 ¢ Z(') and the equality follows from
Result 5.3. So we assume that % Z %. There are two cases:
(a) # C&Y: Then
(U7 )Co = (U Cs)” byResult5.2
=9 @ (% 2%) by the hypothesis and Result 3.6
=(9QU)2% by Theorem 4.4
=w"yeae,

as required.
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{(b) % C.#L: Then

(#7)Cx =(#Cs )" byResult5.2
=G@(UDG)
C(% %)% by Proposition 4.8
=)o
- (J//T’ 0%, by Lemma 3.7(a)
=(#")C, ~ byResults.1.

It follows that (#7)Coo = (" )27,

The equality for 7, follows similarly by using Lemma 3.7(b) and the duals of
Result 3.6 and Theorem 4.4. The same argument as for 7, and T, also yields the
equalities for K, and K, using Result 3.10, Theorem 4.7, Proposition 4.8 and their
duals. [J

Remark 5.6. Let 7=7, N 7T,. Then by [24, Corollary 6.3], #T =% o for all % €
LA ARYS). Whether Theorem 5.5 holds for 7 is still open. In particular, we do not
know whether or not 4% &4 =(#%)C,,, wherc A#Y =% oA is the e-variety of all
bands of groups.

As an analogue to the notion of focality of monoid varieties in the sense of Tilson
[30], Szendrei [28] introduced the notion of e-locality (or bi-locality) of e-varieties.
We shall not go into this topic in detail, and refer the readers to [11, 12, 28] for
definitions and detailed information. Using this notion, Jones and Trotter [12] gave
another sufficient condition for # <% =#C. as follows.

Result 5.7 (Jones and Trotter [12]). If # € L..(8.9) is e-local, then U %G =WUC.

In [28], Szendrei showed that the e-variety of all orthodox semigroups is e-local,
and every e-variety of orthogroups is e-local. In particular, every e-variety of bands is
e-local. Jones [11] showed that for each variety # of groups the e-variety € Z(A ),
consisting of all completely regular semigroups whose subgroups belong to ., is
e-local. In particular, 6.4 is e-local. As the next remark points out, not every e-variety
of regular semigroups is e-local.

Remark 5.8. (This observation was pointed out to the authors by P.R. Jones.) It fol-
lows from Result 5.7 that Example 5.4 presents an infinite family of e-varieties of
completely simple semigroups which are not e-local.

For any variety .# of groups, we denote by A the largest variety of inverse semi-
groups having E-unitary covers over # (sec [21, Definition XI1.9.3]).
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Result 5.9 (Petrich [21]). Let . # € L(%4). Then

H ={SoA),
[ =ulu=1is a law in #].

Result 5.10 (Reilly and Zhang [26}). Let # € L(%). Then
(a) (AW =60 y? =\, (AT
(b) (AW =RAo # = \/”20(/}')(&/{, r

The equalities 64 @ # = (€ R o H ) and B H = (B o #),. for any group vari-
ety .# in the next result were proved by Jones and Trotter [12]. For the case # =¥,
the equality 6.9 =%.# %% was first obtained by Szendrei [29] as a consequence of
her description of the bifree regular £-solid semigroup.

Theorem 5.11. Let # € £,(G). Then
@) (AW = (EROH )0 =CRDH.
O) (A= (SoH)=B5a.

Proof. (a) Since % is e-local (see [28]), it follows from [12, Proposition 5.1] that
A =9 = # . Using the fact that 6.4 =\/, S0 LT we have

ChoA =\ S
n>0

= \/ g o by Proposition 3.13(c)
n>0

- \/ (& #)YT)" by Result 3.6, Theorem 4.4 and their duals

n>0
— \/ (%} )(Y)T,)”
n>0

=(#) by Result 5.10(a),

as required.
(b) This follows similarly by using the fact that #=\/, ., v * &’ 0

In some sense we have reduced the membership problem of € # < # to that of #
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6. E-varieties of the form €. ® ¥

Our goal in this section is to dcscribe the e-varieties of the form # ® ¥ with
U C6Y. We first consider the cases when # € { L&, RF , RAB}.

Lemma 6.1. For any + € %.(RY), we have £ 7 @4 =L F VY.

Proof. It is clear that X7 V¢ C ¥¥ & v . For the converse, let Lc ## and Tc ¥
Since the projection 7y : Reg(L & T)— T is a homomorphism, it follows that Reg(L &
T)/fn € 4" On the other hand, L € 7 implies that the projection 7, : Reg(L ® T)—
LT is also a homomorphism, so that Reg(L @ T)/iz € ¥ . But clearly ) N7 =1
on Reg(L®T). It follows that Reg(L ® T) is a subdirect product of Reg(L ® T)/ﬁz
and Reg(L ® T)/ﬁl, so that Reg(Lw©w T)e % V /. Hence, X RV C LI VY, as
required. O

Lemma 6.2. For any ¥ € LAY, we have R2 S+ CRF ot =y K,

Proof. Let ¥ € %, (AY). Since ## o+ is an e-variety, it suffices to show that
Reg(R®RTYeERF o4 for any Re #% and T € /. So let R€#F and T €. First
observe that if (f,e)eReg(R& T) with e € E(T), then ¢f = f, that is, ( f,e) is an
idempotent. Since the projection n:Reg(R& T)— T is a homomorphism, it follows
that Reg(R® T)/T're ", It remains to show that 7w is over #%. So let ( f,1),(g,t)€
Reg(R® T') be such that ( f,t)yn=(y,t)n=1t€ E(T). Then by the above observation,
we have

(f:00g,0)=(['9,2) = (g,1) = (g.1),
so that rr~' is a right zero semigroup. Hence, 7 is over #%, and therefore Reg(R® T) €
R¥ oy, as required. [J

Corollary 6.3. For any 4 € LAY, B4 =24 D =K In particular, if + € {4,
CL CR,C,EF}, then RYL &4 =1

Proof. This is an immediate consequence of Lemma 6.2. [
As a corollary of [12, Corollary 3.7], we have the following.

Result 6.4. For uny v+ € L RS, RF < (4 Ly="+"L. In particulur,
(1) A7 @(ABLY=AL;
(i) #Z QEARALY=CAL;
(i) AL @(FLYy=J9L;
(ivy #Z @(CLY=CL;
(V) AL (S L)Y=ESL.
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It is well-known that % .# also forms a variety of unary semigroups, determined by
the identities xx ™! ! =x~'x. There have been great advances
in the study of the lattice £(¥#) of subvarieties of ¥.# in recent years. For an
extensive bibliography, consult Petrich and Reilly [22]. Since any regular subsemigroup
of a completely regular semigroup is also completely regular, it follows that #(€-#)
i1s a complete sublattice of Z.(#.%") and that each e-subvariety of ¥ # consists of
completely regular semigroups.

x=x,(x ") =x and xx~

Proposition 6.5. For any + € L(€R), we have RE Q4 =RE NV 1.

Proof. Let ¥ € %, (6#). Then ¥ € L(€#) and by Birkhoff’s Theorem, there exists
a set of (unary semigroup) identities {u, =v,},c4 such that ¥~ = [u, = v,],c 4. By [35,
Proposition 2.9], we have 2% V¥ =[u,x =v,X],c 4, Where x ¢ c(1,)Uc(v,). To show
that 2.7 & 1 =A% v 1, it suffices to show that 27 & 4" C[u,x = v,x],c4. For each
aeA, let u, =u,(x),..., %,y =uy(x;) and v, = t,(x),...,x;) =04{x;). Now let R€ 27,
Tet, (fit;),(f.0)E Reg(R® T), for 1 <i<n. For € 4, we then have

u (St t) = (g, u ()Y f,t)  for some g€ RT
=(g"" f, u,(t))
= (Y fu()t)  since R€ R

and

e (St DS 0) = (h, e(t))( f>1)  for some he RT
= (h"™ f,v,(t:)1)
= (" f, vt)0).

Since T € 1 = [u,(x;) = vy(x;)], it follows that u,(t;) = v,(t;) and u,(¢; ) = v,(¢; )t. Thus,
w(C L iSO = ((fi, ) f.t) and hence Reg(R @ T) satisfies the identity u,(x;)x
= v,(x;)x. Consequently, Reg(R @ T') € [tuyX = 0y X]ye 4 = AF VT, and therefore #Y <
y CARZ VY, as required. [

In [7], Hall established a Birkhoff-type theorem for e-varieties of regular semigroups
by showing that each e-variety of regular semigroups is determined by a set of unary
semigroup identities. In the context of orthodox semigroups, Kadourek and Szendrei
[14] introduced the notion of biidentity, and associated with each e-variety # of or-
thodox semigroups the set of all biidentities which hold in 4. Similar results (to the
orthodox case in [14]) for e-varieties of locally inverse semigroups or E-solid regular
semigroups have been obtained by Auinger [1]. Here we shall use a similar theory
developed by Kadourek [13] for locally orthodox semigroups.

As in [13], let X be a nonempty set, let X’ ={x’'|x€ X} be a disjoint copy of X,
and let /=X UX’. In addition, let / AJ={(x,v)e! xI|x#V or y#x'}. We shall
write (x A y) for (x, y) in /Al. Let F’(X) denote the absolutely free semigroup on the
set [ U AT, By a triidentity over X we mean any pair u = v of words u,v € F'M(X).
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Let S€ L. A mapping 0 : TUJ AT — S is called tied if the following two conditions
hold:

(1) x’0 € V(x0) for any x € X, and

(1) (x A )0 eS(y0,x0) for any (x A v)el Al

We say that a triidentity u= v is satisfied in S if, for any tied mapping 0 : I U A
I — S, we have ull=v0 where (0 : F'*(X)— S is the unique homomorphism extending
0. The triidentity u=v is sdtisfied in a class 7 of locally orthodox semigroups if it
is satisfied in each member of 7.

For any set X of triidentities over X, let [X] be the class of all locally orthodox
semigroups in which all triidentities are satisfied. As pointed out in [13], [2] need not
be an e-variety in general. However, the following result will be useful.

Result 6.6 (Kadourek [13]). If v € L (L), then there exists a set X of triidentities
such that + =[]

For any u€ F'"(X) we lct

c(u) — the set of all elements of 7/ U/ AT that appears in u,

t(u) — the tail of u, that is, the element of 7 U7 A/ oecurring last from
the left in w.

We are now ready to prove our next result.

Proposition 6.7. For any V € L((L), #Y & =RI NV V.

Proof. Let 7 € %, (CL). Note that ANV CRZ 1 CRL (AL V1) To
show that 22 @+ =A% Vv 1, it suffices to show that A K(AL NV 1 YCARAI VY.
By Result 6.6, there exists a set X = {u, = v, },=4 of triidentities such that £.7 vV =
[t = ty]4eq- By Corollary 6.4, #2 o2 (A2 V 1) C (L. The same type of argument as
in the proof of Proposition 6.5 yields that #.2 (A2 V 17) C [uyz = v42],c4, Where
z ¢ c{u,)Uc(ry,) for all x € A. Note that S(a,b) = bV (ab)a, for any S € 24 and a,b € S.
For each x € A4, since u, = v, is satisfied in 2%, it follows that (1) t{(u,)=t(v,)=x, for
some x €. X UX'; or (ii) t(uy) = (v Ax) and #(v,) = (y; Ax), for some x, ¥,y € X UX";
or (iii) Huy,)=x and t(r,)={(v A x), for some x,y€ X UX’; or (iv) t{(u,)=(y A x)
and #(v,)=x, for some x, v€X UX’. In each of the above cases, by letting z =x'x,
that u,z =rv,z is satisfied in £¥ (A2 V1) implies that u, = v, is also satisfied
in A (A% V1), It follows that 27 (A VY [uy=0,]uca =RV Y, as
required. [

The above results automatically lead us to the following question:
Question 6.8. Is it true that #2 5 1 =RF N1 for any +° € Lo (RS

Combining Proposition 3.13(a) and Lemma 6.1 with the results of this section, we
have the following.



N.R. Reillv, S. Zhung | Journal of Pure and Applied Algebra 135 (1999) 57-91 87

Corollary 6.9. For any 1 € L (RS, AB A =L N ARY & 0 In particular, if
1 € LACR)Y or Lo((L), then RABG f =ARAN 1.

Theorem 6.10. Let % € £.(9), and let 1 € L (ALY be monoidal. Then
Q)Y (U RIYR Y CUR(ARYL DY),
b)Y if ¥+ € LolES)Y or Lo(FL),

(W DRL)VE A =UK(ARL ).
Proof. (a) If # = .7, then the inclusion clearly holds. So we assume that % #£.7. Let
Sec#w A% and R€ ¥ Since ¥ is monoidal, R' € ¥ By Result 3.6, # © #4 C6€Y
so that by Ree’s Theorem (see [9, Theorem II1.2.11]), S=.4(G;I.A; P) with G #.

It follows from [12, Proposition 4.1] that S embeds in (G© T) x L for some T € ¥
and L€ ¥ 7. Thus we clearly have

Reg(S % R) <, Reg(S & R')
<,Reg((G® T)x L)@ R') by Lemma 3.9(b)
<,Reg((G&T)2R") x Reg(L = R"),
by a natural embedding. From the proof of Lemma 6.1 and Result 3.6,
Reg(L % RNYE LIV T CURAL 1)
By Corollary 4.2, we also have
Reg((G TYORY € L ¥ o(U (AL & 1))
=LY oULLINIUY(AZ &1 ) by Result 3.6
CULL ALFNVU)(AZ &Y )y by Result 2.4
=(LLVUYARY &1 Ner
=W (A% 1) by Result 3.6.

It follows that Reg(S & R)E W S( AL & 1 ). Hence (W RIS f CU(ALS Y ).

(b) Let ¥ € ¥ . (&) or ¥ .(FL). From (a), it remains to show that # &3 (A% &
I V(U AZ)YR Y . Solet GEW and S€ A¥ & 1 . By Result 3.5, we have A7 &
y C &Y or L. Thus by Result 3.3, there exist T € .£% and Re ¥ such that S<,
Reg(T © R). Since 7 is monoidal, R' € ¥, and clearly Reg(T & R)<,Reg(T & R"). It
now follows from Lemmas 3.8 and 4.3 that

G©S<,GoReg(T@RY<,G 2 Reg(T &R )<, Reg((GTH Y& RY).

Since Reg((G & T* YSRDYE(W XYY, we have GRS e(# 2 42)% ¢ Hence
USRI V(W ARLYR Y, as required. [
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Corollary 6.11. Let % € L. (€.Y) be such that NG # T, and V' € L (RS be
monoidal. Then

(@) #RV C(UNG)(AZL & T ),

(b) in particular, if 1 CEY or L, CS 1 =9Q(RZLRY).

Proof. This follows immediately from Theorem 6.10 and the fact that % C(# N%) R
RY and €S =9 R7. O

Our main result of this section is now an immediate consequence of the above
results.

Theorem 6.12. Let ¥ € Lo (AY) be a monoidul e-variety such that AZ Q¢ =+
Then for any U € L ..(6Y), we have

W@t (ANG)yz v if HNG# .7,
Ut =
’ (UNLIIY YT otherwise.

In particular, 6 @4 =17,
Corollary 6.13. (i) 6. @ . =(#2 vV .S)";

(i) ¢S 2B =3,

(iii) [12, Lemma 3.12] 6. QC R =CH;

(iv) 6 0.9 =(RF v I,

V) CTrRe=C";

(vi) [12, Corollary 3.13] 6. & 6. =69
Proof. This follows from Corollaries 6.3, 6.11 and Proposition 6.7. 0O

For completely regular semigroup e-varicties, we have the following general result.
Result 6.14 (Petrich and Reilly [22]). Let ¥ € L(6R) and V" = [ty =vy]ze4. Then

gl = [xeey = xu,(xv, )(),,\‘zf1 = X1, ( XUy )O],@,

where x & c(uy)Uc(rv,) for all x€ A.
Theorem 6.15. Let ¥ € Lo (6R) with #4 C+ . Then €5 4 =+,
Proof. If +" C %.%, then by [12, Proposition 3.10], 6. Q¥ =69 =X =47 So
we assume that ¥ C ¥ and 7 = [u,(x;) = (X)) lre4. By Result 3.6, ¥ =4 @4 C
%% & ¥, It remains to show that ©.% & ¥ C # 7. Note that from Corollary 6.13 that

€S @+ CEA. By [36, Proposition 2.7] and Result 6.14, we have

V= [ ()% = 1,(X )X ]ve s
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and
P L 0 0
0 = [V = yux(Yr,x)”, voaX = youX( VugX ) lueds

where x, vé¢ c(u,)Uc(r,) for all x€4. Now let S€¥4¥ and T €77, and let ( f;,¢),
(f.1)(g,s)EReg(S=T). Since T € 7, it follows that

uy(;) = v,4(4;) =g, say,
(S0 Siat))(ge8) = (LD ous(1:))(ges)  for some /'€ ST
=(f"1""9.195) (8)
and
L0 St ges) = (00" 0,(6))g,s)  for some [ € ST
=(f"f""g,195). (9)

Our next step is to show that the elements in (8) and (9) are .¥-equivalent in
Reg(S & T). Towards this end, let e = (tg)° and define 4 € ST by xh = (xf W xtf )xtqy)
[(xe ) (xet [ )(xetgg)]~'. To see that (h,e)cReg(S®T), let keS™ be defined by
xk = (xeh)™". Then

(h,e)(k,e)(h,e)=(hkh,e),
where, for all xe 7!,

X(H kS R) = (xh)(xek)(xeh)

= (xh)(xeh)™ ' (xeh).

Now, since S is completely simple,

xeh = (xef )(xet /" )(xetqq)[(xef Yxet [ )(xetgg)] "
and

xh = (x f)(xtf" ) xtgg)(xe f Y xet [ ) (xetgy)] ™'

it follows that x4.%# (xetq)g¥xeh. Hence x(h°k¢h)=xh for all xc T' so that (h,e)(k, e)
(h,e)=(h,e). Therefore (h,e) € Reg(S @ T). Now consider

(h ) f 1A S 1))(g8) = (hoe)(f' £ g.1g5)
= (K[ " "g,1g5). (10)
For any x€ T,
XK [ "M g) = (xh)(xe f ) (xet f" Yxetqy)
= (/) f Y (xegg)[(xe f ) (xet £ Y xetgqg)]”
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= (x /)t f ) (xtgy)lxe f Y xet S Y (xtgg))
= (xf)xtf N xgg)
=x(f1f""y), (1)

since x f(xt f " Woxtgy)-L xtqg L (xef Y xet/" Wxtqy) in S. It follows from (8), (10) and
(11) that (A, e)( [, (( fi.t; DG )= f.Du((fit:))(g,8). By symmetry, it follows
that

(5 OulCfis )Ny s) L 00ACS 16y s)
in Reg(S & T). Hence,
L 0w g, 9) = 0Lt GO D06 (929)]

and

(S 00((fif)(9:5) = (L 00t Dl (S 1))(9.5)]
from which it follows that the identities

Vitgx = vix(vu,x )’ and  ve,x = yeax(vu )’

hold in Reg(S & T). Consequently, Reg(S::T)e 7 T and therefore 6.4 & 1 C ¥ 1,
as required. [J
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